Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).[1][2] An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction.

Variants exist, aiming to force the learned representations to assume useful properties.[3] Examples are regularized autoencoders (Sparse, Denoising and Contractive), which are effective in learning representations for subsequent classification tasks,[4] and Variational autoencoders, with applications as generative models.[5] Autoencoders are applied to many problems, including facial recognition,[6] feature detection,[7] anomaly detection and acquiring the meaning of words.[8][9] Autoencoders are also generative models which can randomly generate new data that is similar to the input data (training data).[7]

  1. ^ Kramer, Mark A. (1991). "Nonlinear principal component analysis using autoassociative neural networks" (PDF). AIChE Journal. 37 (2): 233–243. Bibcode:1991AIChE..37..233K. doi:10.1002/aic.690370209.
  2. ^ Kramer, M. A. (1992-04-01). "Autoassociative neural networks". Computers & Chemical Engineering. Neutral network applications in chemical engineering. 16 (4): 313–328. doi:10.1016/0098-1354(92)80051-A. ISSN 0098-1354.
  3. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  5. ^ Welling, Max; Kingma, Diederik P. (2019). "An Introduction to Variational Autoencoders". Foundations and Trends in Machine Learning. 12 (4): 307–392. arXiv:1906.02691. Bibcode:2019arXiv190602691K. doi:10.1561/2200000056. S2CID 174802445.
  6. ^ Hinton GE, Krizhevsky A, Wang SD. Transforming auto-encoders. In International Conference on Artificial Neural Networks 2011 Jun 14 (pp. 44-51). Springer, Berlin, Heidelberg.
  7. ^ a b Géron, Aurélien (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. Canada: O’Reilly Media, Inc. pp. 739–740.
  8. ^ Liou, Cheng-Yuan; Huang, Jau-Chi; Yang, Wen-Chie (2008). "Modeling word perception using the Elman network". Neurocomputing. 71 (16–18): 3150. doi:10.1016/j.neucom.2008.04.030.
  9. ^ Liou, Cheng-Yuan; Cheng, Wei-Chen; Liou, Jiun-Wei; Liou, Daw-Ran (2014). "Autoencoder for words". Neurocomputing. 139: 84–96. doi:10.1016/j.neucom.2013.09.055.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search